Cortical control of object‐specific grasp relies on adjustments of both activity and effective connectivity: a common marmoset study
نویسندگان
چکیده
KEY POINTS The cortical mechanisms of grasping have been extensively studied in macaques and humans; here, we investigated whether common marmosets could rely on similar mechanisms despite strong differences in hand morphology and grip diversity. We recorded electrocorticographic activity over the sensorimotor cortex of two common marmosets during the execution of different grip types, which allowed us to study cortical activity (power spectrum) and physiologically inferred connectivity (phase-slope index). Analyses were performed in beta (16-35 Hz) and gamma (75-100 Hz) frequency bands and our results showed that beta power varied depending on grip type, whereas gamma power displayed clear epoch-related modulation. Strength and direction of inter-area connectivity varied depending on grip type and epoch. These findings suggest that fundamental control mechanisms are conserved across primates and, in future research, marmosets could represent an adequate model to investigate primate brain mechanisms. ABSTRACT The cortical mechanisms of grasping have been extensively studied in macaques and humans. Here, we investigated whether common marmosets could rely on similar mechanisms despite striking differences in manual dexterity. Two common marmosets were trained to grasp-and-pull three objects eliciting different hand configurations: whole-hand, finger and scissor grips. The animals were then chronically implanted with 64-channel electrocorticogram arrays positioned over the left premotor, primary motor and somatosensory cortex. Power spectra, reflecting predominantly cortical activity, and phase-slope index, reflecting the direction of information flux, were studied in beta (16-35 Hz) and gamma (75-100 Hz) bands. Differences related to grip type, epoch (reach, grasp) and cortical area were statistically assessed. Results showed that whole-hand and scissor grips triggered stronger beta desynchronization than finger grip. Task epochs clearly modulated gamma power, especially for finger and scissor grips. Considering effective connectivity, finger and scissor grips evoked stronger outflow from primary motor to premotor cortex, whereas whole-hand grip displayed the opposite pattern. These findings suggest that fundamental control mechanisms, relying on adjustments of cortical activity and connectivity, are conserved across primates. Consistently, marmosets could represent a good model to investigate primate brain mechanisms.
منابع مشابه
Comparing Verb and Object Naming Between Patients With Parkinson Disease and Patients With Cortical Stroke
Objectives: Based on recent studies, verb naming is more impaired than noun naming in patients with Parkinson Disease (PD). Noun and verb retrieval problems has been well documented in patients with cortical damage. To explore the possible contribution of cortex and subcortex areas in word finding test performance, we studied verb and object naming in patients with cortical and subcortical lesi...
متن کاملPassive Non-Prehensile Manipulation of a Specific Object on Predictable Helix Path Based on Mechanical Intelligence
Object manipulation techniques in robotics can be categorized in two major groups including manipulation with and without grasp. The aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled...
متن کاملControlling instabilities in manipulation requires specific cortical-striatal-cerebellar networks.
Dexterous manipulation requires both strength, the ability to produce fingertip forces of a specific magnitude, and dexterity, the ability to dynamically regulate the magnitude and direction of fingertip force vectors and finger motions. Although cortical activity in fronto-parietal networks has been established for stable grip and pinch forces, the cortical regulation in the dexterous control ...
متن کاملEffects of left prefrontal transcranial direct current stimulation on the acquisition of contextual and cued fear memory
Objective(s): Behavioral and neuroimaging studies have shown that transcranial direct current stimulation, as a non-invasive neuromodulatory technique, beyond regional effects can modify functionally interconnected remote cortical and subcortical areas. In this study, we hypothesized that the induced changes in cortical excitability following the application of cathodal or anodal tDCS over the ...
متن کاملVentral premotor to primary motor cortical interactions during object-driven grasp in humans
Interactions between the ventral premotor (PMv) and the primary motor cortex (M1) are crucial for transforming an object's geometrical properties, such as its size and shape, into a motor command suitable for grasp of the object. Recently, we showed that PMv interacts with M1 in a specific fashion, depending on the hand posture. However, the functional connectivity between PMv and M1 during the...
متن کامل